Abstract

For accurate positioning of motion systems having an accurate yet low-order dynamic model from actuators to sensors and to unmeasured performance variables is crucial. A (reduced) Finite Element (FE) dynamic model may be a good candidate. However, a FE model in practice has limited accuracy in describing the dynamic behavior of the system for nano positioning performance. This can be either due to the simplifications in the FE modeling or due to system variations. To improve the dynamic properties of the (reduced) FE model toward dynamic properties of the real system, an Iterative Pole-Zero (IPZ) model updating procedure that updates poles and zeros of a single Frequency Response Function (FRF) was recently proposed. Using more FRFs from different actuator/sensor configurations helps to better improve the dynamic properties of the (reduced) FE model. In this paper, an extension of IPZ model updating to use multiple FRF measurements is presented. The proposed method is verified using a simulated experiment of a pinned-sliding beam structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.