Abstract
The dynamic characteristics of system, namely the damping ratio, natural frequency, and mode shape are extracted from the frequency response function (FRF). Obtaining dynamic characteristics through FRF on large rotor system is impractical owing to safety and cost. Therefore, the dimensional scale method to predict FRF on a large rotor system is proposed. The method begins by deriving the scaling factor of FRF followed by its validation using finite element (FE) and transfer function modeling. In this case, the transfer function completes the FE modeling to describe the FRF system and compensates the lack in FE modeling in dealing with complex support and shape. Assuming the damping ratio is constant, the characteristic of dimensional analysis through FRF is obtained and the complexity of the proposed method is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.