Abstract

This paper is devoted to the problem of solving a system of nonlinear equations with an arbitrary but continuous vector function on the left-hand side. By assumption, the values of its components are the only a priori information available about this function. An approximate solution of the system is determined using some iterative method with parameters, and the qualitative properties of the method are assessed in terms of a quadratic residual functional. We propose a self-learning (reinforcement) procedure based on auxiliary Monte Carlo (MC) experiments, an exponential utility function, and a payoff function that implements Bellman’s optimality principle. A theorem on the strict monotonic decrease of the residual functional is proven.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.