Abstract
This paper presents an enhanced hybrid (e.g. stochastic/deterministic) method for Linear Algebra based on bulding an efficient stochastic s and then solving the corresponding System of Linear Algebraic Equations (SLAE) by applying an iterative method. This is a Monte Carlo preconditioner based on Markov Chain Monte Carlo (MCMC) methods to compute a rough approximate matrix inverse first. The above Monte Carlo preconditioner is further used to solve systems of linear algebraic equations thus delivering hybrid stochastic/deterministic algorithms. The advantage of the proposed approach is that the sparse Monte Carlo matrix inversion has a computational complexity linear of the size of the matrix, it is inherently parallel and thus can be obtained very efficiently for large matrices and can be used also as an efficient preconditioner while solving systems of linear algebraic equations. Several improvements, as well as the mixed MPI/OpenMP implementation, are carried out that enhance the scalability of the method and the efficient use of computational resources. A set of different test matrices from several matrix market collections were used to show the consistency of these improvements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.