Abstract

The optimal rotational alignment of brain Computed Tomography (CT) images to a required standard position has a crucial importance for both automatic and manual diagnostic analysis. In this contribution, we present a novel two-step iterative approach for the automatic 3D rotational alignment of brain CT data. The angles of axial and coronal rotations are determined by an unsupervised by localisation of the Midsagittal Plane (MSP) method. This includes detection and pairing of medially symmetrical feature points. The sagittal rotation angle is subsequently estimated by regression convolutional neural network (CNN). The proposed methodology has been evaluated on a dataset of CT data manually aligned by radiologists. It has been shown that the algorithm achieved the low error of estimated rotations (≈1 degree) and in a significantly shorter time than the experts (≈2 minutes per case).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.