Abstract
In this work, a new design framework of adaptive iterative learning control (ILC) approach for a class of uncertain nonlinear systems is presented. By making use of the closed-loop reference model which works as an observer, the developed adaptive ILC method is able to be adopted to deal with the output tracking problem of nonlinear systems without requiring the measurability of system states. In the system, the uncertainties are formed by the product of unknown parameters and state functions that are also unknown as the system states are not available. In order to facilitate the controller design and convergence analysis, the composite energy function (CEF) method is employed, and the accurate tracking task can be realized successfully. The proposed approach extends CEF-based ILC approach sucessfully to output tracking control of nonlinear systems without requiring the system states information and complicated observer design. The effectiveness of the proposed ILC scheme is verified through an illustrative numerical example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.