Abstract

This paper proposes a novel Iterative Learning Control (ILC) framework for spatial tracking. Spatial tracking means that the temporal component is not fixed which violates the standing assumption on time intervals in traditional ILC. The proposed framework allows for the length of the time interval to change with each iteration. To relate the spatial information from the past to the present iteration, the concept of spatial projection is proposed. A class of nonlinear uncertain systems with input saturation is chosen for demonstration. An a appropriate ILC control law, exploiting the spatial projection idea, is proposed and the corresponding convergence analysis, based on the Composite Energy Function, is carried out. It is shown that spatial tracking is achieved under appropriate assumptions related to spatial projection and provided that the desired trajectory is realizable within the saturation bound. Finally, simulation results illustrate the predicted convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.