Abstract

We present a single synchrophasor estimation (SE) algorithm that is simultaneously compliant with both P and M phasor measurement unit (PMU) performance classes. The method, called iterative-interpolated discrete Fourier transform (i-IpDFT), iteratively estimates and compensates the effects of the spectral interference produced by both a generic interfering tone, harmonic or interharmonic, and the negative image of the fundamental tone. We define the three-point i-IpDFT technique for cosine and Hanning window functions and we propose a procedure to select the i-IpDFT parameters. We assess the performance of the i-IpDFT with respect to all the operating conditions defined in the IEEE Std. C37.118 for P- and M-class PMUs. We demonstrate that the proposed SE method is simultaneously compliant with all the accuracy requirements of both PMU performance classes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call