Abstract

On-board cone-beam computed tomography (CBCT) is a new imaging technique for radiation therapy guidance, which provides volumetric information of a patient at treatment position. CBCT improves the setup accuracy and may be used for dose reconstruction. However, there is great concern that the repeated use of CBCT during a treatment course delivers too much of an extra dose to the patient. To reduce the CBCT dose, one needs to lower the total mAs of the x-ray tube current, which usually leads to reduced image quality. Our goal of this work is to develop an effective method that enables one to achieve a clinically acceptable CBCT image with as low as possible mAs without compromising quality. An iterative image reconstruction algorithm based on a penalized weighted least-squares (PWLS) principle was developed for this purpose. To preserve edges in the reconstructed images, we designed an anisotropic penalty term of a quadratic form. The algorithm was evaluated with a CT quality assurance phantom and an anthropomorphic head phantom. Compared with conventional isotropic penalty, the PWLS image reconstruction algorithm with anisotropic penalty shows better resolution preservation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call