Abstract
The update summary as defined for the DUC2007 new task aims to capture evolving information of a single topic over time. It delivers focused information to a user who has already read a set of older documents covering the same topic. This paper presents a novel manifold-ranking frame based on iterative feedback mechanism to this summary task. The topic set is extended by using the summarization of previous timeslices and the first sentences of documents in current timeslice. Iterative feedback mechanism is applied to model the dynamically evolving characteristic and represent the relay propagation of information in temporally evolving data. Modified manifold-ranking process also can naturally make use of both the relationships among all the sentences in the documents and relationships between the topic and the sentences. The ranking score for each sentence obtained in the manifold-ranking process denotes the importance of sentence biased towards topic, and then the greedy algorithm is employed to rerank the sentences for removing the redundant information. The summary is produced by choosing the sentences with high ranking score. Experiments on dataset of DUC2007 update task demonstrate the encouraging performance of the proposed approach.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.