Abstract
Document similarity search (i.e. query by example) aims to retrieve a ranked list of documents similar to a query document in a text corpus or on the Web. Most existing approaches to similarity search first compute the pairwise similarity score between each document and the query using a retrieval function or similarity measure (e.g. Cosine), and then rank the documents by the similarity scores. In this paper, we propose a novel retrieval approach based on manifold-ranking of document blocks (i.e. a block of coherent text about a subtopic) to re-rank a small set of documents initially retrieved by some existing retrieval function. The proposed approach can make full use of the intrinsic global manifold structure of the document blocks by propagating the ranking scores between the blocks on a weighted graph. First, the TextTiling algorithm and the VIPS algorithm are respectively employed to segment text documents and web pages into blocks. Then, each block is assigned with a ranking score by the manifold-ranking algorithm. Lastly, a document gets its final ranking score by fusing the scores of its blocks. Experimental results on the TDT data and the ODP data demonstrate that the proposed approach can significantly improve the retrieval performances over baseline approaches. Document block is validated to be a better unit than the whole document in the manifold-ranking process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.