Abstract
Due to the restrictive growth and/or monotonicity requirements inherent in their employment, classical iterative fixed-point theorems are rarely used to approximate solutions to an integral operator with Green’s function kernel whose fixed points are solutions of a boundary value problem. In this paper, we show how one can decompose a fixed-point problem into multiple fixed-point problems that one can easily iterate to approximate a solution of a differential equation satisfying one boundary condition, then apply a bisection method in an intermediate value theorem argument to meet a second boundary condition. Error estimates on the iterates are also established. The technique will be illustrated on a second-order right focal boundary value problem, with an example provided showing how to apply the results.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have