Abstract
The quantum approximate optimization algorithm (QAOA) is a leading iterative variational quantum algorithm for heuristically solving combinatorial optimization problems. A large portion of the computational effort in QAOA is spent by the optimization steps, which require many executions of the quantum circuit. Therefore, there is active research focusing on finding better initial circuit parameters, which would reduce the number of required iterations and hence the overall execution time. While existing methods for parameter initialization have shown great success, they often offer a single set of parameters for all problem instances. We propose a practical method that uses a simple, fully connected neural network that leverages previous executions of QAOA to find better initialization parameters tailored to a new given problem instance. We benchmark state-of-the-art initialization methods for solving the MaxCut problem of Erdős-Rényi graphs using QAOA and show that our method is consistently the fastest to converge while also yielding the best final result. Furthermore, the parameters predicted by the neural network are shown to match very well with the fully optimized parameters, to the extent that no iterative steps are required, thereby effectively realizing an iteration-free QAOA scheme.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have