Abstract

This paper establishes the iteration complexity of an inner accelerated inexact proximal augmented Lagrangian (IAIPAL) method for solving linearly constrained smooth nonconvex composite optimization problems that is based on the classical augmented Lagrangian (AL) function. More specifically, each IAIPAL iteration consists of inexactly solving a proximal AL subproblem by an accelerated composite gradient (ACG) method followed by a classical Lagrange multiplier update. Under the assumption that the domain of the composite function is bounded and the problem has a Slater point, it is shown that IAIPAL generates an approximate stationary solution in ACG iterations where is a tolerance for both stationarity and feasibility. Moreover, the above bound is derived without assuming that the initial point is feasible. Finally, numerical results are presented to demonstrate the strong practical performance of IAIPAL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.