Abstract
The augmented Lagrangian method is a classical solution method for nonlinear optimization problems. At each iteration, it minimizes an augmented Lagrangian function that consists of the constraint functions and the corresponding Lagrange multipliers. If the Lagrange multipliers in the augmented Lagrangian function are close to the exact Lagrange multipliers at an optimal solution, the method converges steadily. Since the conventional augmented Lagrangian method uses inaccurate estimated Lagrange multipliers, it sometimes converges slowly. In this paper, we propose a novel augmented Lagrangian method that allows the augmented Lagrangian function and its minimization problem to have variable constraints at each iteration. This allowance enables the new method to get more accurate estimated Lagrange multipliers by exploiting Karush–Kuhn–Tucker points of the subproblems and consequently to converge more efficiently and steadily.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.