Abstract

The maximally diverse grouping problem (MDGP) is to partition the vertices of an edge-weighted and undirected complete graph into m groups such that the total weight of the groups is maximized subject to some group size constraints. MDGP is a NP-hard combinatorial problem with a number of relevant applications. In this paper, we present an innovative heuristic algorithm called iterated maxima search (IMS) algorithm for solving MDGP. The proposed approach employs a maxima search procedure that integrates organically an efficient local optimization method and a weak perturbation operator to reinforce the intensification of the search and a strong perturbation operator to diversify the search. Extensive experiments on five sets of 500 MDGP benchmark instances of the literature show that IMS competes favorably with the state-of-the-art algorithms. We provide additional experiments to shed light on the rationality of the proposed algorithm and investigate the role of the key ingredients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.