Abstract
Braces were introduced by Rump as a promising tool in the study of the set-theoretic solutions of the Yang-Baxter equation. It has been recently proved that, given a left brace $B$, one can construct explicitly all the non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation such that the associated permutation group is isomorphic, as a left brace, to $B$. It is hence of fundamental importance to describe all simple objects in the class of finite left braces. In this paper we focus on the matched product decompositions of an arbitrary finite left brace. This is used to construct new families of finite simple left braces.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have