Abstract

A realistic tight-binding approach for the self-consistent calculation of the itinerant spin configurations of disordered metallic systems has been developed and is used to study numerically the problem of the magnetic states at T = 0 K of iron-rich amorphous alloys of the type Fe 1− x Zr x H y , and of fictitious amorphous Fe of different densities. In our approach, the local spin polarization is not restricted to the z-direction, i.e. the polarization magnitude as well as its direction can vary from site to site. The calculations show that the spin configurations depend strongly on the preparation, and that changes of the relative spin orientations can lead to drastic changes of the itinerant atomic moments. Metastable spin configurations with essentially isotropic distribution can be prepared by relaxing the system in gradually vanishing external fields with isotropically distributed randomness and zero spatial average, whereas with a non-vanishing average the so-called asperomagnetic configurations are obtained, i.e. ferromagnetic states with randomly frozen transverse components. For iron-rich Fe 1− x Zr x alloys with x = 0.07, according to our calculation, the isotropic spin glass configuration would have slightly lower energy than the asperomagnetic state, by amounts corresponding to ≈ 0.003 eV per electron, while for the hydrogenated system Fe 1- x Zr x H y with y ≈ 2 x, the asperomagnetic state would be favoured by ≈ 0.004 eV. For two computer models of (fictitious) amorphous Fe with densities of 7.39 and 9.19 g cm −3, the spin-glass and the asperomagnetic states have roughly the same energy, although for the low-density sample the magnitudes of the moments are quite different in both states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.