Abstract

iTASC (acronym for dasiainstantaneous task specification and controlpsila) by J. De Schutter (2007) is a systematic constraint-based approach to specify complex tasks of general sensor-based robot systems. iTASC integrates both instantaneous task specification and estimation of geometric uncertainty in a unified framework. Automatic derivation of controller and estimator equations follows from a geometric task model that is obtained using a systematic task modeling procedure. The approach applies to a large variety of robot systems (mobile robots, multiple robot systems, dynamic human-robot interaction, etc.), various sensor systems, and different robot tasks. Using an example task, this paper shows that iTASC is a powerful tool for multi-sensor integration in robot manipulation. The example task includes multiple sensors: encoders, a force sensor, cameras, a laser distance sensor and a laser scanner. The paper details the systematic modeling procedure for the example task and elaborates on the task specific choice of two types of task coordinates: feature coordinates, defined with respect to object and feature frames, which facilitate the task specification, and uncertainty coordinates to model geometric uncertainty. Experimental results for the example task are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.