Abstract
This paper introduces a systematic constraint-based approach to specify complex tasks of general sensor-based robot systems consisting of rigid links and joints. The approach integrates both instantaneous task specification and estimation of geometric uncertainty in a unified framework. Major components are the use of feature coordinates, defined with respect to object and feature frames, which facilitate the task specification, and the introduction of uncertainty coordinates to model geometric uncertainty. While the focus of the paper is on task specification, an existing velocity- based control scheme is reformulated in terms of these feature and uncertainty coordinates. This control scheme compensates for the effect of time varying uncertainty coordinates. Constraint weighting results in an invariant robot behavior in case of conflicting constraints with heterogeneous units. The approach applies to a large variety of robot systems (mobile robots, multiple robot systems, dynamic human-robot interaction, etc.), various sensor systems, and different robot tasks. Ample simulation and experimental results are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.