Abstract
A solar flare was observed on 1997 April 7 with the Soft X-ray Telescope (SXT) on Yohkoh. The flare was associated with a halo coronal mass ejection (CME). The flaring region showed areas of reduced soft X-ray (SXR) brightness—dimmings—that developed prior to the CME observed in white light and persisted for several hours following the CME. The most prominent dimming regions were located near the ends of a preflare SXR S-shaped (sigmoid) feature that disappeared during the event, leaving behind a postflare SXR arcade and cusp structure. Based upon these and similar soft X-ray observations, it has been postulated that SXR dimming regions are the coronal signatures (i.e., remnants) of magnetic flux ropes ejected during CMEs. This Letter reports new observations of coronal dimming at extreme-ultraviolet (EUV) wavelengths obtained with the Extreme-ultraviolet Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO). A series of EIT observations in the 195 A Fe XII wavelength band were obtained simultaneously with SXT during the 1997 April 7 flare/CME. The EIT observations show that regions of reduced EUV intensity developed at the same locations and at the same time as SXR dimming features. The decrease in EUV intensity (averaged over each dimming region) occurred simultaneously with an increase in EUV emission from flaring loops in the active region. We interpret these joint observations within the framework of flux-rope eruption as the cause of EUV and SXR coronal dimmings, and as the source of at least part of the CME.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have