Abstract

Thoughtful use of simplifying assumptions is crucial to make systems biology models tractable while still representative of the underlying biology. A useful simplification can elucidate the core dynamics of a system. A poorly chosen assumption can, however, either render a model too complicated for making conclusions or it can prevent an otherwise accurate model from describing experimentally observed dynamics. Here, we perform a computational investigation of sequential multi-step pathway models that contain fewer pathway steps than the system they are designed to emulate. We demonstrate when such models will fail to reproduce data and how detrimental truncation of a pathway leads to detectable signatures in model dynamics and its optimised parameters. An alternative assumption is suggested for simplifying such pathways. Rather than assuming a truncated number of pathway steps, we propose to use the assumption that the rates of information propagation along the pathway is homogeneous and, instead, letting the length of the pathway be a free parameter. We first focus on linear pathways that are sequential and have first-order kinetics, and we show how this assumption results in a three-parameter model that consistently outperforms its truncated rival and a delay differential equation alternative in recapitulating observed dynamics. We then show how the proposed assumption allows for similarly terse and effective models of non-linear pathways. Our results provide a foundation for well-informed decision making during model simplifications.

Highlights

  • Biochemical reaction networks are often complicated and any attempt to describe them using mathematical models relies heavily on simplifying assumptions [1]

  • We perform a computational investigation of sequential multi-step pathway models that contain fewer pathway steps than the system they are designed to emulate. We demonstrate when such models will fail to reproduce data and how detrimental truncation of a pathway leads to detectable signatures in model dynamics and its optimised parameters

  • Effective models are based on simplifying assumptions that reduce complexity while still retaining the core dynamics of the original problem

Read more

Summary

Introduction

Biochemical reaction networks are often complicated and any attempt to describe them using mathematical models relies heavily on simplifying assumptions [1]. One example is the receptor-like kinase FLAGELLIN SENSING 2 which, upon detecting of a pathogen, triggers a long chain of phosphotransfers, phosphorylations, and subcellular re-localisations that eventually leads to an immune response in Arabidopsis thaliana [22, 23]. Another well studied system is the TGFβ growth factor, which triggers a sequence of phosphorylation steps before affecting the expression of downstream genes [24,25,26]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call