Abstract
The compressed sensing (CS) method can reconstruct images with a small amount of under-sampling data, which is an effective method for fast magnetic resonance imaging (MRI). As the traditional optimization-based models for MRI suffered from non-adaptive sampling and shallow” representation ability, they were unable to characterize the rich patterns in MRI data. In this paper, we propose a CS MRI method based on iterative shrinkage threshold algorithm (ISTA) and adaptive sparse sampling, called DSLS-ISTA-Net. Corresponding to the sampling and reconstruction of the CS method, the network framework includes two folders: the sampling sub-network and the improved ISTA reconstruction sub-network which are coordinated with each other through end-to-end training in an unsupervised way. The sampling sub-network and ISTA reconstruction sub-network are responsible for the implementation of adaptive sparse sampling and deep sparse representation respectively. In the testing phase, we investigate different modules and parameters in the network structure, and perform extensive experiments on MR images at different sampling rates to obtain the optimal network. Due to the combination of the advantages of the model-based method and the deep learning-based method in this method, and taking both adaptive sampling and deep sparse representation into account, the proposed networks significantly improve the reconstruction performance compared to the art-of-state CS-MRI approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.