Abstract

Part. I A new method for analyzing and treatment of organochlorine pesticides (OCPs) in water by solid-phase microextraction (SPME) combined with crab shell and chitosan as an adsorbent is described. The OCPs can effectively control almost all kinds of pests including insect, fungi, rodent, etc. However, they continue to be detected in both biological and environmental samples worldwide because of their persistent and bioaccumulative properties. The present study is the first to use porous biopolymer crab shell and chitosan as an adsorbent for removal of the 18 kinds of OCPs remaining in the water samples. The OCPs standards in the study, including α-HCH、β-HCH、γ-HCH、δ-HCH、Heptachlor、Aldrin、Heptachlor epoxide isomer B、α-Endosulfan、4,4'-DDE、Dieldrin、Endrin、β-Endosulfan、4,4'-DDD、Endrin aldehyde、Endosulfan sulfate、4,4'- DDT、Endrin ketone and Methoxychlor. We use the 65μm PDMS/DVB fibers and two ways sampling, headspace mode and direct immersion mode, to extract the OCPs from the treatment water samples. Finally, we inject the sample to the GC/ECD for analysis. According to experiments, the water samples after crab shell treatment, we find that seventeen kinds of OCPs can be effectively treatment to 100 % (2.8 ng). The water samples after chitosan treatment, we also find that sixteen kinds of OCPs can be effectively treatment to 100 % (2.8 ng), and the other one is 99.3 %. In this study, we present here the use of crab shell and chitosan have good result and multiplicity concurrently for the removal of OCPs present in water samples. It is easy for the crab shell to obtain and cheap cost, from the environmental protection view, can really use and develop. Part. II A method for analyzing of organochlorine pesticides (OCPs) in bovine milk by hollow fiber membrane-protected solid-phase microextraction (HFM-SPME) is described. Although most of OCPs have been banished from use for many years, they are still detected in organism adipose tissue, blood, urine, feces, sperm and breast milk because of their great chemical stability and lipid solubility. In this study, we use the 65μm PDMS/DVB SPME fibers and hollow fiber membrane-protected mode to extract the OCPs from bovine milk samples. After the sampling, then inject the sample to the GC/ECD for analysis. There are 18 kinds of OCPs standards in the study, including α-HCH、β-HCH、γ-HCH、δ-HCH、Heptachlor、Aldrin、Heptachlor epoxide isomer B、α-Endosulfan、4,4'-DDE、Dieldrin、Endrin、β-Endosulfan、4,4'-DDD、Endrin aldehyde、Endosulfan sulfate、4,4'- DDT、Endrin ketone and Methoxychlor. HFM-SPME experimental parameters such as extraction temperature, extraction time, salt concentration and pH values were investigated and optimized. According to experiments, we choose that 100 ℃extraction temperature, 60 min extraction time, 1 %(w/v) salt concentration and pH 6.6 for the best response in HFM extraction mode. In this optimal parameters, we find that sixteen kinds of OCPs can be effectively extracted in skim milk samples and eleven kinds of OCPs in whole milk samples. We present here that HFM-SPME was an efficient pretreatment method and have good results for complex matrices samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call