Abstract
Since the seminal contribution of Geymonat, Müller, and Triantafyllidis, it is known that strong ellipticity is not necessarily conserved by homogenization in linear elasticity. This phenomenon is typically related to microscopic buckling of the composite material. The present contribution concerns the interplay between isotropy and strong ellipticity in the framework of periodic homogenization in linear elasticity. Mixtures of two isotropic phases may indeed lead to loss of strong ellipticity when arranged in a laminate manner. We show that if a matrix/inclusion type mixture of isotropic phases produces macroscopic isotropy, then strong ellipticity cannot be lost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.