Abstract

In this study, the combined density functional theory (DFT) and molecular dynamics (MD) simulation methods were carried out to investigate the potential capability of uranium-decorated graphene (U–G) for the separation of deuterium from hydrogen gases. Graphene with hexagonal honeycomb lattice arrangement is suitable for adsorption of individual uranium atoms, with a high binding energy (−1.173 eV) and U-U distance longer than 7 Å. This U-G system has ability to hold up to six H2 (5.16% wt) or seven D2 (11.75% wt) molecules per U atoms. To gain further insights into these interactions, partial electronic density of states (PDOS) and the electron density distribution of the elements were analyzed. The MD results are in reasonable agreement with the results obtained by DFT method. Our calculated results indicate that at room temperature, D2 molecule has higher affinity for U-G system than the H2 molecule. In order to increase the D2 separation factor from H2, the effect of temperature was studied. The results indicated that adsorption ratio of D2 to H2 increases by decreasing the temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.