Abstract
Decreased consumption of leaded gasoline in the United States over the past two decades has drastically altered the flux and isotopic composition of Pb entering the western North Atlantic from the atmosphere. Here we exploit the resulting temporal changes in the distribution and isotopic composition of oceanic Pb to investigate interactions between dissolved and particulate Pb in the oceanic water column. Measurements of dissolved Pb isotopic composition on samples collected in 1987 in the upper water column near Bermuda demonstrate that surface water 206Pb/207Pb decreased from ∼1.203 to ∼1.192 since 1983 and that a measurable change propagated to 300–500 m since the 1984 profile of Shen and Boyle (1988). The first accurate measurements of suspended particulate Pb in an open ocean profile show concentrations of 1–3 pmol/L, equal to 2–4% of total Pb. Vertical profiles of (1) the stable lead isotopic composition and (2) the ratio of total Pb to 210Pb in suspended particles closely track contemporaneous depth variations in these ratios for dissolved Pb throughout the upper 2000 m of the Sargasso Sea near Bermuda. Thus suspended particles reach isotopic equilibrium with ambient sea water Pb on a time scale which is shorter than their residence time with respect to vertical removal, in agreement with equilibrium scavenging hypotheses based on interpretations of Th isotope distributions. A simple flux model suggests that the effect of deep ocean scavenging processes on the flux and isotopic composition of Pb sinking on large particles was minor throughout the preanthropogenic and most of the anthropogenic era but has become important as surface inputs decrease to pre‐leaded gasoline levels and may exceed the contribution of surface‐derived Pb flux in the next decade.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have