Abstract

Iron formations (IFs) are chemical sedimentary rocks that were widely deposited before the Great Oxidation Event (GOE) around 2.4–2.2 Ga. It is generally thought that IFs precipitated as hydrated Fe3+ oxides (HFOs) such as ferrihydrite following surface oxidation of Fe2+-rich, anoxic deep waters. This model often implicates biological oxidation and underpins reconstructions of marine nutrient concentrations. However, nanoscale petrography indicates that an Fe2+ silicate, greenalite, is a common primary mineral in well-preserved IFs, motivating an alternative depositional model of anoxic ferrous silicate precipitation. It is unclear, however, if Fe2+-rich silicates can produce the Fe isotopic variations in IFs that are well explained by Fe2+ oxidation. To address this question, we constrain the equilibrium Fe isotopic (56Fe/54Fe) fractionation of greenalite and ferrihydrite by determining the iron phonon densities of states for those minerals. We use ab initio density functional theory (DFT + U) calculations and nuclear resonant inelastic X-ray scattering spectroscopy to show that ferrous greenalite should be isotopically lighter than ferrihydrite by ∼1–1.2‰ at equilibrium, and fractionation should scale linearly with increasing Fe3+ content in greenalite. By anchoring ferrihydrite–greenalite mineral pair fractionations to published experimental Fe isotopic fractionations between HFOs and aqueous Fe2+, we show that ferrous greenalite may produce all but the heaviest pre-GOE Fe isotopic compositions and mixed valence greenalites can produce the entire record. Our results suggest that heavy Fe isotope enrichments alone are not diagnostic of primary IF mineralogies, and ferrihydrite and partially oxidized or even purely ferrous greenalite are all viable primary IF mineralogies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.