Abstract

With increasing concerns about sustainable exploitation of tropical timber, there is a need for developing independent tools to check their origin. We evaluated the potential of tree-ring stable isotopes for identifying four Cedrela species (C. balansae, C. fissilis, C. odorata, and C. saltensis) and for identifying geographic origin of C. fissilis and C. odorata, two of the most intensively exploited species. We studied differences in δ13C and δ18O of wood among 11 forest sites (163 trees). We quantified isotope composition of 10-year bulk samples, and for a subset we also evaluated isotopic annual fluctuations for the last 10 years. Although annual isotopic variability was not correlated to precipitation or elevation, we found a significant relationship between the 10-year bulk stable-isotope composition and average precipitation and elevation. However these relationships were not consistent across all sites. We also explored isotopic site and species differentiation using Kernel Discriminant Analyses. Site discrimination was low: 30% accuracy for C. odorata, and 40% for C. fissilis sites. However, species discrimination was 57.5% for C. odorata and 95.3% for C. fissilis. These results suggest that although δ13C and δ18O isotopic analyses hold potential to verify species identification, discrimination of geographical origin within a country may still be challenging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call