Abstract

The effects of electron irradiation on the structure and the D/H signature of a synthetic analogue of extraterrestrial insoluble organic matter (IOM) were studied. Polyethylene terephthalate (PET) was chosen because it contains both aliphatic and aromatic functional groups. A 900nm-thick film was irradiated with electrons within the energy range 4–300keV, for different run durations. Temperature influence was also tested. Irradiated residues were structurally and isotopically characterized by infrared spectroscopy (IR), electronic paramagnetic resonance (EPR), and Secondary Ion Mass Spectrometry (SIMS). With increasing energy deposition, spectroscopic results indicate (i) a gradual amorphization with chain scissions, (ii) an increase of CH2/CH3 and (iii) the formation of quinones. The EPR study shows that mono- and biradicals (organic species with one or several unpaired valence electrons) are also formed during irradiation. As these structural modifications occur, the δD (initially at −33‰ relative to SMOW) decreases first during a transient step and then stabilizes at ∼+300‰. There is a strong correlation between the changes recorded by the different methods and the electron dose. Deposited energy appears to be the key parameter to induce these modifications. In this respect a low-energy electron irradiation causes more damages than high energy ones. Based on our data and considering the current solar electron flux, the irradiation at moderate energy (1–10keV) can produce significant D-enrichments of the IOM in a timescale compatible with the evolution of a typical protoplanetary disk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call