Abstract

The fractionation of B and its isotopes between aqueous fluid and silicate melt has been studied from 550 to 1100 °C and 100–500 MPa. Fluid-melt partition coefficients are 1 for rhyolite melt. This shows that B is not always strongly extracted from melts into hydrous fluids. Boron isotopic fractionation is large compared with the carbon and oxygen stable isotopic systems (especially at high T ) and is most simply explained by differences in coordination (trigonal vs. tetrahedral) among coexisting phases. Combined with earlier measurements on illite-water (300–350 °C), B isotopic fractionation defines a temperature-dependent trend from 300 to 1100 °C. Because of the large magnitude and apparent low sensitivity to bulk composition, B isotopic fractionation can be readily applied to studies of diagenesis, hydrothermal alteration of planetary bodies, subduction-zone processing and arc magma generation, and magma chamber evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.