Abstract

Over the last decade experimental studies have shown a large B isotope fractionation between materials carrying boron incorporated in trigonally and tetrahedrally coordinated sites, but the mechanisms responsible for producing the observed isotopic signatures are poorly known. In order to understand the boron isotope fractionation processes and to obtain a better interpretation of the experimental data and isotopic signatures observed in natural samples, we use first principles calculations based on density functional theory in conjunction with ab initio molecular dynamics and a new pseudofrequency analysis method to investigate the B isotope fractionation between B-bearing minerals (such as tourmaline and micas) and aqueous fluids containing H3BO3 and H4BO4- species. We confirm the experimental finding that the isotope fractionation is mainly driven by the coordination of the fractionating boron atoms and have found in addition that the strength of the produced isotopic signature is strongly correlated with the BO bond length. We also demonstrate the ability of our computational scheme to predict the isotopic signatures of fluids at extreme pressures by showing the consistency of computed pressure-dependent β factors with the measured pressure shifts of the BO vibrational frequencies of H3BO3 and H4BO4- in aqueous fluid. The comparison of the predicted with measured fractionation factors between boromuscovite and neutral fluid confirms the existence of the admixture of tetrahedral boron species in neutral fluid at high P and T found experimentally, which also explains the inconsistency between the various measurements on the tourmaline–mica system reported in the literature. Our investigation shows that the calculated equilibrium isotope fractionation factors have an accuracy comparable to the experiments and give unique and valuable insight into the processes governing the isotope fractionation mechanisms on the atomic scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call