Abstract

Data are presented on multiphoton dissociation of halogenated methanes, CF3I and CF3Br, in a pulsed CO2 laser field in the single-pulse irradiation regime. It is shown that the high parameters of an elementary separation event (dissociation yield and selectivity, quantum efficiency) for these molecules can be used to achieve efficient laser separation of the carbon isotopes 12C and 13C. An analysis is made of problems involved in organizing the chemical cycle when the process is scaled up. A description is given of an apparatus for scaled-up laser isotope separation, including a pulse-periodic CO2 laser with a kilowatt average power, and a laser separation cell. Experiments carried out using this apparatus showed that the high parameters obtained in the single-pulse regime can also be achieved using this design and a yield rate comparable with that of traditional separation systems can be achieved for fairly low energy losses. These results make it possible to develop a commercial system for laser isotope separation using multiphoton dissociation of molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call