Abstract

The temperature dependences of spin-lattice relaxation time T1 of 35Cl and 37Cl NQR were studied for the co-crystal of tetramethylpyrazine (TMP) with chloranilic acid (H2ca), TMP-H2ca, in which one-dimensional hydrogen bonding is formed by alternate arrangement of TMP and H2ca. The isotope ratio 37Cl T1 / 35Cl T1 was determined to be 1.0 ± 0.1 above ca. 290 K where a steep decrease of spin-lattice relaxation time T1 with increasing temperature was observed. In this temperature range it is suggested that the relaxation is originated from the slow fluctuation of electric field gradient (EFG). Beside EFG fluctuation due to the external-charge-density fluctuation, the small angle reorientation of the quantization axis triggered by a proton transfer motion between N...H-O and N-H...O hydrogen bonding states is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.