Abstract
AbstractEnergy transferred in atom‐surface collisions typically depends strongly on projectile mass, an effect that can be experimentally detected by isotopic substitution. In this work, we present measurements of inelastic H and D atom scattering from a semiconducting Ge(111)c(2×8) surface exhibiting two scattering channels. The first channel shows the expected isotope effect and is quantitatively reproduced by electronically adiabatic molecular dynamics simulations. The second channel involves electronic excitations of the solid and, surprisingly, exhibits almost no isotope effect. We attribute these observations to scattering dynamics, wherein the likelihood of electronic excitation varies with the impact site engaged in the interaction.Key Points Previous work revealed that H atoms with sufficient translational energy can excite electrons over the band gap of a semiconductor in a surface collision. We studied the isotope effect of the energy transfer by H/D substitution and performed band structure calculations to elucidate the underlying excitation mechanism. Our results suggest a site‐specific mechanism that requires the atom to hit a specific surface site to excite an electron‐hole pair.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have