Abstract

The underdoped region of the cuprate's phase diagram displays many novel electronic phenomena both in the normal and the superconducting state. Many of these anomalous properties have found a natural explanation within the resonating valence bond spin liquid phenomenological model of Yang-Rice-Zhang (YRZ) which includes the rise of a pseudogap. This leads to Fermi surface reconstruction and profoundly changes the electronic structure. Here we extend previous work to consider the shift in critical temperature on $^{16}$O to $^{18}$O substitution, The isotope effect has been found experimentally to be very small at optimal doping yet to rapidly increase to very large values with underdoping. The YRZ model provides a natural explanation of this behavior and supports the idea of a pairing mechanism which is mainly spin fluctuations with a subdominant $(\sim 10\%)$ phonon contribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.