Abstract

To improve the reduction effect of nickel slag in preparing Fe–Co–Ni–Cu alloy, an oxidization pretreatment was carried out to changing the structure and phase of silicate and sulfide for the nickel slag before the reducing process. The oxidation behavior and kinetics of nickel slag under different temperature and time conditions were discussed. The results shown that in the oxidation process of nickel slag, the part of Fe2SiO4 was oxidized to Fe3O4 and further to Fe2O3, and the other part of Fe2SiO4 directly oxidized to Fe2O3. Meanwhile, the nickel, cobalt and copper in the form of silicate and sulfide were changed into oxides. The changes of the phases are beneficial to the subsequent reduction of nickel slag. The oxidation degree of nickel slag reached 98% under suitable oxidation conditions (900 °C, 15 min). The oxidation kinetic model of nickel slag obtained by Ln–Ln analysis and Model-fitting method was three-dimensional diffusion at lower temperature (300 °C, 400 °C and 500 °C) and random nucleation at higher temperature (700 °C, 900 °C and 1000 °C) respectively. The activation energies obtained by the model method and the model-free method were 28.58 kJ.mol−1 and 26.28 kJ.mol−1 at lower temperature (300 °C, 400 °C and 500 °C) respectively, and the corresponding value were 81.98 kJ.mol−1 and 78.36 kJ.mol−1 at higher temperature (700 °C, 900 °C and 1000 °C) respectively. The activation energy calculated by the two methods was relatively close, and both can be used to calculate the activation energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call