Abstract

This research study describes the influence of different heat treatment temperature on isothermal oxidation of Fe-33Ni-18Cr alloy. The Fe-33Ni-18Cr alloy was undergone heat treatment at three different temperatures, namely 1000 °C, 1100 °C and 1200 °C for 3h soaking time followed by water quench to vary the grain size of the alloy. This alloy was ground by using several grit of silicon carbide papers as well as weighed by using analytical balance and measured by using Vernier caliper before oxidation test. The heat-treated Fe-33Ni-18Cr alloy was isothermally oxidized at 800 °C for 150h. The characterization of oxidized samples was carried out using optical microscope, scanning electron microscope equipped with energy dispersive x-ray (SEM-EDX) and x-ray diffraction (XRD). The results showed that, increasing the heat treatment temperature was increased the average grain size. The kinetics of oxidation followed the parabolic rate law which represents diffusion-controlled oxide growth rate. Fine grain structure of 1000 °C sample shows minimum weight gain and lower oxidation rate compared to samples of 1100 °C and 1200 °C that indicated oxide spallation and porous structure. Besides, phase analysis showed that the oxidized sample formed several oxide phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call