Abstract
Isothermal crystallization of poly(glycolic acid) (PGA) has been studied using terahertz (THz) and infrared (IR) spectroscopy and simultaneous small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) measurements. Changes in the intermolecular interactions in PGA during the isothermal crystallization were monitored using THz spectroscopy, which is an efficient technique for analyzing the higher-order structure of polymers. In the THz spectra, the temporal difference in the intensity observed in the isothermal crystallization is due to the difference in the vibrational origins of two bands at 192 and 65 cm−1. The band at 192 cm−1 primarily originates from the intramolecular vibrational mode (twisting of the local structure of the PGA molecular chain). Furthermore, the band at 65 cm−1 exists due to the intermolecular vibration mode (C = O···H-C hydrogen bonds between polymer chains). In addition, these THz bands appeared after the appearance of the SAXS and WAXD peaks. When a lamellar structure is formed and the molecular chains are oriented, the THz band originating from the intermolecular vibration is observed. It is highly possible that the intermolecular vibration appearing in the THz spectra requires the molecular chains to be oriented. Isothermal crystallization of poly(glycolic acid) (PGA) was carried out using terahertz (THz) and infrared (IR) spectroscopy and simultaneous small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) measurements. The intensity of the absorption peak at 192 cm−1 increased before the increase in intensity of the peak at 65 cm−1 during the isothermal melt-crystallization process at 185 °C. This is due to a difference in the vibrational origins of these two bands. In addition, these THz bands appeared after the appearance of the SAXS and WAXD peaks
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.