Abstract

Isothermal and thermomechanical fatigue (TMF) behaviour (including cyclic stress response and number of cycles to failure) of a Ti – 5.6Al – 4.8Sn – 2.0Zr – 1.0Mo – 0.32Si – 0.8Nd (wt-%) hightemperature titanium alloy was examined. The purpose of the present investigation was to understand the effect of temperature fluctuation on the cyclic behaviour and fatigue life of this alloy and to test the suitability of lifetime prediction based on isothermal laboratory data. The results indicated that both the level of peak stress and fatigue life were decreasing with increasing test temperature from 400°C to 650°C in isothermal fatigue (IF) tests. In TMF tests run between 400°C and 600°C, the peak stresses corresponding to 600°C coincide well with that found in IF tests run at 600°C, while a slight increase in cyclic hardening was found for peak stress corresponding to 400°C compared to that found in a 400°C/IF test. This increase in cyclic hardening became more pronounced when the maximum temperature increased to 650°C. Fatigue life in 'out of phase' (OP) condition was found to be shorter than under an equivalent 'in phase' (IP) condition, and this gap increased with decreasing mechanical strain amplitude. The results indicate that lifetime prediction based on isothermal laboratory data may lead to non-conservative results if thermal fluctuations are present in components made of the present alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.