Abstract
The growth of interfacial intermetallic compounds (IMC) between Pb-free and Pb-based solders with different surface finish (Cu and Ni/Au) metallization is a major concern for long-term solder joint reliability performance in electronic assemblies. The growth rate of the IMC layer can affect the solder joint reliability. Analysis of solid-state diffusion mechanism for the growth of IMC between solder-to-substrate interface for Pb-free and Pb-based solders subject to isothermal and thermal cycling aging were conducted. Experimental study of IMC layer growth between Sn3.8Ag0.7Cu and Ni/Au surface finish by isothermal aging versus thermal cycling (TC) aging was investigated to develop a framework for correlating IMC layer growth behavior. An integrated model for IMC growth was derived to describe the Ni-Cu-Sn IMC growth behavior subject to TC aging. Comparison of modeling and test results showed that IMC layer growth rate under TC aging was accelerated. It is noted that IMC layer growth study from various references showed different experimental data and growth kinetic parameters for both liquid-state and solid-state reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Components and Packaging Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.