Abstract

This paper presents isoparametric line and transition finite element formulation for two dimensional heat conduction. The element properties are derived using weak formulation of the Fourier heat conduction equation and the element approximation where nodal temperatures and the nodal temperature gradients are retained as primary variables. The formulation permits linear temperature distribution through the element thickness. Distributed heat flux as well as convective boundaries are permitted on all four faces of the elements. Furthermore, the elements can have internal heat generation as well as orthotropic material properties. The superiority of the formulation in terms of efficiency and accuracy is demonstrated. Numerical examples are presented to illustrate their applications, and a comparison is made with theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.