Abstract

This paper presents a finite element formulation for axisymmetric shell heat conduction where temperature gradients through the shell thickness are retained as primary nodal variables. The element geometry is constructed using the coordinates of the nodes lying on the middle surface of the shell and the middle surface nodal point normals. The element temperature field is approximated in terms of element approximation functions, the nodal temperature, and the nodal temperature gradients. The weak formulation of the two-dimensional Fourier heat conduction equation in cylindrical coordinate system is constructed. The finite element properties of the shell element are then derived using the weak formulation and the element temperature field approximation. The formulation permits linear temperature gradients through the shell thickness. Distributed heat flux as well as convective boundaries are permitted on all four faces of the element. Furthermore, the element can also have internal heat generation as well as orthotropic material properties. The superiority of the formulation in terms of efficiency and accuracy is demonstrated. Numerical examples are presented and a comparison is made with the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.