Abstract

Two fractional factorial designs are considered isomorphic if one can be obtained from the other by relabeling the factors, reordering the runs, and/or switching the levels of factors. To identify the isomorphism of two designs is known as an NP hard problem. In this paper, we propose a three-dimensional matrix named the letter interaction pattern matrix (LIPM) to characterize the information contained in the defining contrast subgroup of a regular two-level design. We first show that an LIPM could uniquely determine a design under isomorphism and then propose a set of principles to rearrange an LIPM to a standard form. In this way, we can significantly reduce the computational complexity in isomorphism check, which could only take O ( 2 p ) + O ( 3 k 3 ) + O ( 2 k ) operations to check two 2 k − p designs in the worst case. We also find a sufficient condition for two designs being isomorphic to each other, which is very simple and easy to use. In the end, we list some designs with the maximum numbers of clear or strongly clear two-factor interactions which were not found before.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.