Abstract
We first present a summary of the quantization of the electromagnetic field in position space representation, using two main approaches: the Landau-Peierls approach in the Coulomb gauge and the Białynicki-Birula (BB) approach, based on the Riemann–Silberstein vector. We describe both in a framework that starts with a classical Hamiltonian structure and builds the quantum model in a bosonic Fock space by a precisely defined principle of correspondence. We show that the two approaches are completely equivalent. This is formulated by showing that there is a unitary map between the Fock spaces that makes them isomorphic. Since all the physically measurable quantities can be expressed in terms of scalar products, this implies that the two quantizations lead to exactly the same physical properties. We show furthemore that the isomorphism is preserved in the time evolutions. To show the equivalence, we use the concepts of helicity and frequency operators. The combination of these two operators provides a formulation that allows one to make the link between these two methods of quantization in a precise way. We also show that the construction in the BB quantization that avoids the presence of negative eigenvalues in the Hamiltonian, in analogy with the one for the Dirac equation for electrons and positrons, can be performed through an alternative choice of the canonical variables for Maxwell’s equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.