Abstract
Abstract A novel fibrous silica Y zeolite (HSi@Y) loaded with Pt has been studied based on its ability to produce protonic acid sites originating from molecular hydrogen. The Pt/HSi@Y was prepared using seed assisted crystallization followed by protonation and Pt-loading. The product formed had a spherical morphology with bicontinuous lamellar with a diameter in the range of 500–700 nm. The catalytic activity of the Pt/HSi@Y has been assessed based on light linear alkane (C5–C7) isomerization in a micro-catalytic pulse reactor at 423–623 K. A pyridine IR study confirmed that the introduction of fibrous silica on Y zeolite increased the Lewis acid sites corresponding with the formation of extra-framework Al which led to the generation of more protonic acid sites. A hydrogen adsorbed IR study showed that the protonic acid sites which act as active sites in the isomerization were formed via dissociative-adsorption of molecular hydrogen releasing electrons to the nearby Lewis acid sites. Thus, it is suggested that the presence of Pt and HSi@Y with a high number of Lewis acid as well as weak Bronsted acid sites improved the activity and stability in C5, C6 and C7 isomerization via hydrogen spill-over mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.