Abstract

Isoliquiritigenin (ISL) is a flavonoid substance with a chalcone structure, which exerts anti-tumour, anti-oxidation and anti-inflammatory activity. The large-conductance calcium-activated potassium channel (BKCa ) is an important potassium channel with negative feedback regulation on the vascular smooth muscle cells (VSMCs) membrane. The activation of BKCa channel causes the hyperpolarization of VSMCs. It plays an important role in relaxation of blood vessels. Previous studies have shown that ISL causes the relaxation of the aorta and the basilar artery of the rat. However, there have not been studies on regulation of ISL in mesenteric arteries. To examine whether ISL causes the relaxation of the mesenteric artery of mice, we recorded vasodilation of mouse mesenteric arterial rings with a myograph. After contraction of arterial rings with phenylephrine, we added ISL to the arterial rings and measured its relaxation effect. To further examine which channel was involved in this relaxation effect, we tested the effects of ISL on endothelium-dependent and endothelium-independent vasodilation. Then we used BKCa channel blockers tetraethylammonium and iberiotoxin, to detect whether the BKCa channel is involved in ISL-induced vasodilation. Mesenteric arterial smooth muscle cells were isolated by enzyme digestion. Bis-(1, 3-dibutylbarbituric acid) trimethine oxonol staining was used to measure membrane potential of mesenteric arterial smooth muscle cells. We identified a vasodilation effect caused by ISL on mouse mesenteric arterial rings pre-contracted by phenylephrine in a concentration-dependent manner, with an EC50 of 13.71±1.1μmol/L. The vasodilation effect of ISL is endothelium-independent. K+ channel inhibitors tetraethylammonium and iberiotoxin reduced the vasodilation induced by ISL which suggested the involvement of BKCa channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.