Abstract
ObjectivesOxidative stress, mitochondrial dysfunction, and apoptosis play significant roles in the degradation of extracellular matrix (ECM) in nucleus pulposus cells (NPCs), ultimately contributing to intervertebral disc degeneration (IVDD). This study investigates the potential of isoliquiritigenin (ISL), a natural extract known for its antioxidant, anti-inflammatory, and anti-atherosclerotic properties, to alleviate IVDD. MethodsThe viability of NPCs treated with ISL and tert-butyl hydroperoxide (TBHP) was assessed using the CCK-8 assay. Various techniques, including Western blot, qRT-PCR, immunofluorescence (IF), and immunohistochemistry, were employed to measure the expression of ECM components, oxidative stress markers, and apoptosis-related proteins. Mitochondrial function was evaluated through Western blot and IF analyses. Network pharmacology predicted ISL targets, and the expression levels of PPARγ were assessed using the aforementioned methods. The role of PPARγ in the therapeutic effects of ISL on IVDD was examined through siRNA knockdown. The therapeutic impact of ISL on puncture-induced IVDD in rats was evaluated using X-ray, MRI, and histological staining techniques. ResultsIn vitro, ISL reduced oxidative stress in NPCs, restored mitochondrial function, inhibited apoptosis, and improved the ECM phenotype. In vivo, ISL slowed the progression of IVDD in a rat model. Further analysis revealed that ISL enhances PPARγ activity and promotes its expression by direct binding, contributing to the delay of IVDD progression. ConclusionThis study demonstrates that ISL effectively treats puncture-induced IVDD in rats by inhibiting oxidative stress, restoring mitochondrial function, and reducing NPC apoptosis through a PPARγ-dependent mechanism. By balancing ECM synthesis and degradation, ISL presents a novel therapeutic approach for IVDD and identifies a promising target for treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.