Abstract

BackgroundA wide variety of bacterial species produces protease enzyme, and the application of the same enzyme has been manipulated precisely and used in various biotechnological areas including industrial and environmental sectors. The main aim of this research study was to isolate, screen, and identify alkaline protease-producing bacteria that were sampled from leather industry effluent present in the outer skirts of Addis Ababa, Ethiopia.PurposeTo isolate and characterize the alkaline protease-producing bacteria from leather industrial effluents.MethodsSamples are collected from Modji leather industrial effluents and stored in the microbiology lab. After isolated bacteria from effluent using serial dilution and followed by isolated protease-producing bacteria using skim milk agar media. After studying primary and secondary screening using zonal inhibition methods to select potential protease-producing bacteria using skim milk agar media. Finally, to identify the potential bacteria using biochemical methods, bacterial biomass, protease activity, and gene sequencing (16S rRNA) method to finalize the best alkaline protease producing bacteria identified.ResultsFirst twenty-eight different bacterial colonies were isolated initially from the leather industry effluent sample situated at the Modjo town of Ethiopia. The isolated bacteria were screened using the primary and secondary screening method with skim milk agar medium. At the primary level, we selected three isolates namely ML5(14 mm), ML12(18 mm), and MS12 (15 mm), showing the highest zone of proteolysis as a result of casein degradation on the agar plates were selected and subjected to primary screening. Further secondary screening confirmed that the zone of inhibition methods ML5 (14.00±0.75 mm), ML12 (19.50±0.66 mm), and MS12 (15.00±1.32 mm) has efficient proteolytic activity and can be considered as effective protease producer. The three isolates were then subjected to morphological and biochemical tests to identify probably bacterial species, and all the three bacterial isolates were found out to be of Bacillus species. The shake flask method was carried out to identify the most potent one having greater biomass production capabilities and protease activity. ML12 isolated from leather effluent waste showed the highest protease activity (19 U/ml), high biomass production, and the same was subjected to molecular identification using 16s sequencing and a phylogenetic tree was constructed to identify the closest neighbor. The isolate ML12 (Bacillus cereus strain -MN629232.1) is 97.87% homologous to Bacillus cereus strain (KY995152.1) and 97.86% homologous to Bacillus cereus strain (MK968813.1).ConclusionsThis study has exposed that from twenty-eight different bacterial samples isolated from leather industry effluent; further primary and secondary screening methods were selected three potential alkaline protease strains. Finally, based on its biochemical identification, biomass, and protease activity, ML12 (Bacillus cereus strains) is the best strain identified. The alkaline protease has the significant feature of housing potent bacterial species for producing protease of commercial value.

Highlights

  • A wide variety of bacterial species produces protease enzyme, and the application of the same enzyme has been manipulated precisely and used in various biotechnological areas including industrial and environmental sectors

  • ML12 isolated from leather effluent waste showed the highest protease activity (19 U/ml), high biomass production, and the same was subjected to molecular identification using 16s sequencing and a phylogenetic tree was constructed to identify the closest neighbor

  • This study has exposed that from twenty-eight different bacterial samples isolated from leather industry effluent; further primary and secondary screening methods were selected three potential alkaline protease strains

Read more

Summary

Introduction

A wide variety of bacterial species produces protease enzyme, and the application of the same enzyme has been manipulated precisely and used in various biotechnological areas including industrial and environmental sectors. Purpose: To isolate and characterize the alkaline protease-producing bacteria from leather industrial effluents. Enzymes have better catalytic efficiency, adjustable activity, and high specificity when compared to catalysts of chemical or synthetic origin. These advantages have broadened the application of enzymes in various industries such as chemical, food, and pharmaceutical (Pires-Cabral et al 2010; Yucel 2012; Masi et al 2017a). This has generated a greater demand for enzyme production of high quality by cost-effective and commercial methods. Though the protease enzymes are produced by different forms of life, due to their flexibility towards genetic manipulation, the ones that are produced by microbial sources such as bacteria and fungi are more preferred rather than human or plant protease enzymes (Masi et al 2014; Tiwari et al 2015)

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.