Abstract

1) Rhodobacter capsulatus (formerly Rhodopseudomonas capsulata) strain 37b4 was subjected to transposon Tn5 mutagenesis. 2) Kanamycin-resistant transconjugants were screened for their inability to reduce trimethylamine-N-oxide (TMAO) as judged by the lack of alkali production during anaerobic growth on plates containing glucose as carbon source and cresol red as pH indicator. 3) Of 6 mutants examined, all were found to have considerably decreased levels of methylviologen-dependent TMAO reductase activity and dimethylsulphoxide (DMSO) reductase activity. 4) Periplasmic fractions of one of these mutants (DK9) and of the parent strain were subjected to sodium dodecylsulphate polyacrylamide gel electrophoresis. The gels were stained for TMAO-reductase and DMSO-reductase. With the wild-type strain, only a single polypeptide band, Mr=46,000, stained for TMAO and DMSO reductase activity. In mutant DK9 this band was not detectable. 5) In contrast to the parent strain, harvested washed cells of mutant DK9 were unable to generate a cytoplasmic membrane potential in the presence of TMAO or DMSO under dark anaerobic conditions. 6) In contrast to the parent strain, DK9 was unable to grow in dark anaerobic culture with fructose as the carbon source and TMAO as oxidant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.